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ABSTRACT

The Plant Transcription Factor Database (PlnTFDB;
http://plntfdb.bio.uni-potsdam.de/v3.0/) is an inte-
grative database that provides putatively complete
sets of transcription factors (TFs) and other
transcriptional regulators (TRs) in plant species
(sensu lato) whose genomes have been completely
sequenced and annotated. The complete sets of 84
families of TFs and TRs from 19 species ranging
from unicellular red and green algae to angiosperms
are included in PlnTFDB, representing >1.6 billion
years of evolution of gene regulatory networks. For
each gene family, a basic description is provided
that is complemented by literature references,
and multiple sequence alignments of protein
domains. TF or TR gene entries include information
of expressed sequence tags, 3D protein structures
of homologous proteins, domain architecture and
cross-links to other computational resources
online. Moreover, the different species in PlnTFDB
are linked to each other by means of orthologous
genes facilitating cross-species comparisons.

INTRODUCTION

In order to fulfil their biological functions, genes must
be expressed in specific spatiotemporal patterns. These
patterns are to a large extent established by controlling
the transcription of the genes through which RNA
copies are generated from the DNA template. In this
process, a protein complex composed of general transcrip-
tion factors (TFs) is mandatory to sustain the expression

of all genes encoded by the genome. In addition, other
regulatory proteins enhance or repress the transcriptional
rate of target genes in response to biotic and abiotic
stimuli, and intrinsic developmental processes. These
proteins are TFs that bind, in a sequence-specific
manner, to cis-elements in the target promoters, and
other transcriptional regulators (TRs) that exert their
regulatory function through protein–protein interactions
or chromatin remodeling. The identification of such TFs
and TRs from an appreciable number of organisms of
divergent lineages represents an important first step
towards the understanding of gene regulatory networks
and their evolution. For plants, this step has already
been made by several groups through the development
of databases dedicated to the presentation of TFs and
TRs and accompanying information of relevance to the
research community (1–6). Here we present the current
status of the Plant Transcription Factor Database,
PlnTFDB (4), which in its updated version (v3.0)
provides information about the putatively complete sets
of TFs and TRs from 19 plant species (sensu lato) encom-
passing a broad phylogenetic range of >1.6 billion years
of divergent evolution (7).

DATA SOURCES, ANALYSES AND
IMPLEMENTATION

Species and proteomes covered

In order to identify putatively complete sets of TFs
and TRs, we applied our previously established analysis
pipeline to the proteomes of species whose genomes
have been completely sequenced and annotated (4). The
PlnTFDB v3.0 covers 19 different plant species ranging
from unicellular red and green algae to angiosperms,
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therewith expanding the species spectrum of the previous
version by 12 new species. The species analysed and the
sources of the sequence data used to establish PlnTFDB
v3.0 are listed in Table 1.

Identification of protein domains and new domain models

The identification of TFs and TRs and their classification
into families exploits the presence of protein domains and
their combination within proteins (4). To generate the
current release of PlnTFDB, domains were identified
using the Pfam protein families database v23.0 (21) and
the software package HMMER v2.3.2 (http://hmmer
.janelia.org/). Domain hits with a score higher than or
equal to the gathering cut-off (–cut_ga) defined for each
hidden Markov model (HMM) were kept for further
analyses.

For some families, there is no domain represented in the
Pfam database; in such cases we developed profile HMMs
based on sequence alignments of the respective domains.
For the current version of PlnTFDB, we established
HMMs for the characteristic domains of the families
NOZZLE and VARL. An HMM for the NOZZLE
family is available in the Pfam database; however, this
model only recovers members from the Brassicaceae
family (e.g. Arabidopsis sp.). Hence we used the
Arabidopsis thaliana sequences to perform a PSI-BLAST
search against the non-redundant protein database at
NCBI (http://www.ncbi.nlm.nih.gov/). This allowed us
building a multiple sequence alignment and HMM

of NOZZLE proteins from several angiosperms, i.e.
A. thaliana, Brassica juncea, Medicago truncatula and
Vitis vinifera.
The HMM for the VARL family was built by using the

alignment reported in Duncan et al. (22), with sequences
from Chlamydomonas reinhardtii and Volvox carteri.
The alignments used to create the new HMMs are avail-
able through the database web interface.
After building these HMMs, a score threshold had to be

defined, beyond which the hits are considered significant.
To this end, we run an HMM search with the newly
created models using a very permissive preliminary thresh-
old (e-value � 10). Subsequently, the known members of
the family were localized within the list of hits, which
allowed us identifying putative true positives (TPs) and
putative true negatives (TNs), thus defining the score
threshold as the average between the minimum score
obtained by a TP and the maximum score obtained by a
TN. This procedure is illustrated in Figure 1.

Rules for the classification of TFs and TRs

Compared with version 2.0 of the database, we have
increased the number of rules established for the classifi-
cation of TFs and TRs by Riaño-Pachón et al. (4). We
have now included 16 additional families, totalling 84 in
PlnTFDB v3.0. Briefly, the classification rules ask for the
presence of a single domain in 77 cases, and a combination
of domains in the remaining 7 cases. In addition to these
‘required’ domains, the rules for some families include

Table 1. Species analysed and number of families and classified proteins per species

Groups Species Source Annotation
version

Reference Total number
of proteinsa

Genome
size (Mbp)

Number
of
families

Number of
classified
proteinsa

Red algae
(Rhodophytes)

Cyanidioschyzon merolae 1 20070710 (8) 5008 16.52 34 147
Galdieria sulphuraria 9 (9) 6604 10 37 201

Green algae
(Prasinophytes)

Micromonas pusilla CCMP1545 2 2 (10) 10 455 15 49 289
Micromonas sp. RCC299 2 3 (10) 10 160 15 49 326
Ostreococcus tauri 2 2 (11) 7812 12.56 47 216
Ostreococcus lucimarinus 2 2 (11) 7651 13.204 46 236

Green algae
(Chlorophytes)

Chlamydomonas reinhardtii 2 4 (12) 16 460 121 52 346
Chlorella sp. NC64A 2 1 9762 40 48 304
Coccomyxa sp. C-169 2 1 10 174 120 47 261

Bryophyte
(Bryopsida)

Physcomitrella patens 2 1.1 (13) 35 724 480 72 1295

Spike-moss
(Lycopodiophyte)

Selaginella moellendorffii 2 1 22 138 100 74 896

Angiosperms
(Monocots)

Oryza sativa subsp. indica 3 20050118 (14) 49 643 420 79 2393
Oryza sativa subsp. japonica 4 6 (15) 63 306 420 79 2722
Sorghum bicolor 2 4 (16) 35 682 730 78 2231
Zea mays 5 3b.50 55 810 2400 79 3608

Angiosperms
(Eudicots)

Carica papaya 7 (17) 24 852 372 81 1480
Arabidopsis lyrata 2 1 32 234 206.7 81 2162
Arabidopsis thaliana 6 8 (18) 30 707 125 81 2451
Populus trichocarpa 2 1.1 (19) 45 009 485 81 2901
Vitis vinifera 8 1 (20) 30 342 500 80 1725

(1) CME GP, Cyanidioschyzon merolae Genome Project, http://merolae.biol.s.u-tokyo.ac.jp/; (2) JGI/DOE, Joint Genome Institute/Department of
Energy, http://www.jgi.doe.gov/; (3) BGI, Beijing Genomics Institute, http://www.genomics.org.cn/; (4) TIGR, The Institute for Genomic Research,
http://www.tigr.org/; (5) MaizeSequence.org, http://www.maizesequence.org; (6) TAIR, TheArabidopsis Information Resource, http://www.arabidopsis.
org/; (7) The Hawaii Papaya Genome Project, http://asgpb.mhpcc.hawaii.edu/papaya/; (8) Genoscope, Centre Nacional de Séquençage http://www
.genoscope.cns.fr/spip/Vitis-vinifera-e.html; (9) Data communicated by Prof. Dr Andreas Weber, University of Duesseldorf, Germany.
aNumber of non-redundant proteins.
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‘forbidden’ domains. The forbidden domains allow estab-
lishing a mutually exclusive classification system ensuring
that each individual protein is classified as a member of a
single TF or TR family only. The current sets of ‘required’
and ‘forbidden’ domains of each individual family are
listed in Supplementary Data, Appendix 1. We included
two meta-rules in our classification scheme: (i) if a protein
harbours domains characteristic of a TF family and a TR
family, we assigned it to the TF family, e.g. A. thaliana
protein AT3G51120.1 could be assigned to families C3H
(TF) and SWI/SNF-BAF60b (TR), but according to this
meta-rule it is assigned to C3H. (ii) When the protein of
interest contains domains characteristic of more than one
TF family or more than one TR family, it was assigned
to the family to which its characteristic domains matched
with the lowest e-value. For example, protein 425147
from Selaginella moellendorffii could be classified as
C2H2 (TF, e-value 7.3e-3) or RWP-RK (TF, e-value
6.1e-11), according to the meta-rule it was assigned to
the RWP-RK family.

Database interface and availability

The information about the different regulatory proteins
and their classification into families, as well as sequence
alignments, 3D structures, literature references and
links to other databases are stored in a relational
database, powered by MySQL (http://www.mysql.com;
database schema in Supplementary Data, Appendix 2).

The interface of the database to the World Wide Web
(WWW) was developed by using PHP, JavaScript and
Java applets (Jmol, http://www.jmol.org/; and Jalview,
http://www.jalview.org/) following HTML 4.01 and CCS
v2.1 W3 standards to ensure browser interoperability.

PlnTFDB can be queried using keywords or sequences
(using blastp or blastx), and it is freely accessible through
the WWW via http://plntfdb.bio.uni-potsdam.de/v3.0/
using any modern web browser. The Java Runtime
Environment (JRE) 1.6.0.12 or newer is required in
order to visualize domain alignments and protein 3D
structures.

3D PROTEIN STRUCTURES, EXPRESSED
SEQUENCE TAGS AND ORTHOLOGUES

To widen the information provided for each TF and TR in
PlnTFDB, we have performed similarity-based searches
against the database of sequences with known protein
tertiary structures available from the Protein Data Bank
(PDB) and the expressed sequence tag (EST) databases
available from GenBank. To identify related ESTs, we
used BLAST as search engine, keeping as significant all
hits with an e-value � 10�10 and an alignment identity of
�50% over a length of �80 amino acids. For the detection
of homologous 3D protein structures, we used the package
hhsearch (http://toolkit.tuebingen.mpg.de/hhpred) that
employs HMM—HMM comparisons to detect remote
homologues. Hits were considered significant if the
probability of the target being a TP was >98%. The 3D
structures of proteins similar to entries in PlnTFDB can be
visualized with the Jmol applet (Figure 2), and links are
provided to the PDB web site.

The genomes of some species covered by PlnTFDB, e.g.
A. thaliana and Oryza sativa ssp. japonica, are relatively
well annotated with respect to the biological functions of
the proteins they encode, whereas genomes of others,
including C. reinhardtii, are still in a preliminary status
of annotation of biological functions. As orthologous
genes often have the same function in different species
(23), we have used InParanoid (24) to detect clusters of
orthologous genes between pairs of species in PlnTFDB.
This will ease the transfer of functional information and
provide effective cross-references among the species in
PlnTFDB.

QUALITY CONTROL

To evaluate the quality of the putatively complete sets of
TFs and TRs reported in PlnTFDB, we compared our
predictions to published datasets on detailed single-
family phylogenetic studies, and defined the published
analyses as gold standards. We calculated the sensitivity
and the positive predicted value (PPV) as described before
(4). The results of this evaluation are shown in Table 2.
In all cases, both measures are >80%, and for most
families the sensitivity and PPV values are >90%
(shown in bold face in Table 2), evidencing low rates of
false negatives (FNs) and positives (FPs).

Figure 1. Selecting the significance score threshold in newly created
profile HMMs. The graphic shows the scores obtained for proteins in
the V. carteri proteome when searched with the VARL HMM with an
e-value cut-off of 10. Known members of the family in this species
(TPs) are highlighted in green. The putative TN with the highest
score is indicated by a purple arrow. The TP with the minimum
score is highlighted by a green arrow. The significance score threshold
(black line) is computed as the average between the minimum score for
TPs (green line) and the maximum score for TNs (purple line). For this
family, the selected threshold is �4.25 bits.
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MAIN RESULTS

In the current version of PlnTFDB (v3.0), we present a
total of 84 different TF and TR families that occur in 19
different plant species and encompass 26 184 distinct
proteins. A summary of the content of the database is

shown in Table 1; there is a tendency that the number of
TFs and TRs per family, as well as the number of families,
increases along with the organismic complexity. Correla-
tion analyses support this observation (Supplementary
Data, Appendix 3).

Figure 2. Screenshot of a web page displaying details for a TF gene in PlnTFDB. (A) Every gene page in PlnTFDB displays basic information
(including species name and gene family assignment) for a given TF or TR. If gene names had been assigned (only for A. thaliana and O. sativa ssp.
japonica) they will be displayed as well. (B) The best hits (hhsearch, probability of being a TP �98%) to PDB protein 3D structures are visualized as
static images, a link is provided to the embedded Java applet Jmol where basic operations on the 3D structure can be performed. (C) Links to
orthologues in PlnTFDB are provided. (D) Users can query PlnTFDB through similarity searches (BLAST) using a protein or a nucleotide sequence
as query. (E) Domain architecture is displayed with links to the original domain databases (Pfam or our local database, see section ‘Identification of
protein domains and new domains models’). (F) Links to the protein and transcript sequences of the gene are provided.
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The wide spectrum of gene families covered by
PlnTFDB has already been exploited by researchers, e.g.
for use in genome annotations (12,40,41), functional
studies of TFs and TRs (42,43) and detailed phylogenetic
studies of TF families in the whole plant lineage (28),
among others.

OUTLOOK

As the cost of genome sequencing continues to decrease,
the number of newly sequenced genomes will increase dra-
matically in the near future. The computational analysis
pipeline behind PlnTFDB will be applied to these new
genomes, increasing even further its wide phylogenetic
coverage. We envisage that PlnTFDB will increasingly
be exploited in genome annotation projects as a primary
repository serving the identification of transcription regu-
latory proteins.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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México; Deutscher Akademischer Austauschdienst
(DAAD). Funding for open access charge: GoFORSYS.

Conflict of interest statement. None declared.

REFERENCES

1. Kummerfeld,S.K. and Teichmann,S.A. (2006) DBD: a transcription
factor prediction database. Nucleic Acids Res., 34, D74–D81.

2. Guo,A.-Y., Chen,X., Gao,G., Zhang,H., Zhu,Q.-H., Liu,X.-C.,
Zhong,Y.-F., Gu,X., He,K. and Luo,J. (2008) PlantTFDB: a
comprehensive plant transcription factor database. Nucleic Acids
Res., 36, D966–D969.

3. Palaniswamy,S.K., James,S., Sun,H., Lamb,R.S., Davuluri,R.V.
and Grotewold,E. (2006) AGRIS and AtRegNet. A platform to
link cis-regulatory elements and transcription factors into
regulatory networks. Plant Physiol., 140, 818–829.

4. Riaño-Pachón,D.M., Ruzicic,S., Dreyer,I. and Mueller-Roeber,B.
(2007) PlnTFDB: an integrative plant transcription factor database.
BMC Bioinformatics, 8, 42.

5. Yilmaz,A., Nishiyama,M.Y. Jr, Fuentes,B.G., Souza,G.M.,
Janies,D., Gray,J. and Grotewold,E. (2009) GRASSIUS: a platform
for comparative regulatory genomics across the grasses. Plant
Physiol., 149, 171–180.

6. Richardt,S., Lang,D., Reski,R., Frank,W. and Rensing,S.A. (2007)
PlanTAPDB, a phylogeny-based resource of plant transcription-
associated proteins. Plant Physiol., 143, 1452–1466.

7. Zimmer,A., Lang,D., Richardt,S., Frank,W., Reski,R. and
Rensing,S.A. (2007) Dating the early evolution of plants: detection
and molecular clock analyses of orthologs. Mol. Genet. Genomics,
278, 393–402.

8. Matsuzaki,M., Misumi,O., Shin,I.T., Maruyama,S., Takahara,M.,
Miyagishima,S.Y., Mori,T., Nishida,K., Yagisawa,F., Nishida,K.

Table 2. Sensitivity and PPV of PlnTFDB predictions

Species Family Reference TP/TP+FN TP/TP+FP Sensitivity PPV

ATH AP2-EREBP (25) 146/147 146/146 0.99 1.00
ARF (26) 21/23 21/23 0.91 0.91
AUX/IAA (26) 28/29 28/28 0.97 1.00
bHLH (27) 125/154 125/136 0.81 0.92
bZIP (28) 70/76 70/70 0.92 1.00
C2C2-Dof (29) 35/36 35/36 0.97 0.97
C2C2-GATA (30) 29/29 29/29 1.00 1.00
C3H (31) 65/67 65/68 0.97 0.96
GRAS (32) 32/32 32/33 1.00 0.97
MADS (33) 97/105 97/105 0.92 0.92
MADS (34) 98/108 98/105 0.91 0.93
MYB (35) 185/198 185/212 0.93 0.87
NAC (36) 100/100 100/104 1.00 0.96
SBP (37) 16/17 16/16 0.94 1.00
WRKY (38) 71/72 71/72 0.99 0.99

OSAJ bHLH (39) 134/166 134/143 0.81 0.94
bZIP (28) 82/92 82/90 0.89 0.91
C2C2-GATA (30) 18/19 18/27 0.95 0.67
C3H (31) 65/67 65/70 0.97 0.93
MYB (35) 145/156 145/196 0.93 0.74
SBP (37) 18/19 18/19 0.95 0.95

The sensitivity and the PPV were determined for selected A. thaliana (ATH) and O. sativa ssp. japonica (OSAJ) TF families. For the PPV, a deviation
from 1.00 means the inclusion of FPs. For the sensitivity, deviations from 1.00 indicate exclusion of true members (FNs). Families with both values
larger than 0.90 appear in bold face. TPs according to gold standard.

D826 Nucleic Acids Research, 2010, Vol. 38, Database issue

 at M
PI M

olec Plant Physiology on M
arch 28, 2012

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/


et al. (2004) Genome sequence of the ultrasmall unicellular red
alga Cyanidioschyzon merolae 10D. Nature, 428, 653–657.

9. Barbier,G., Oesterhelt,C., Larson,M.D., Halgren,R.G.,
Wilkerson,C., Garavito,R.M., Benning,C. and Weber,A.P. (2005)
Comparative genomics of two closely related unicellular thermo-
acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon
merolae, reveals the molecular basis of the metabolic flexibility of
Galdieria sulphuraria and significant differences in carbohydrate
metabolism of both algae. Plant Physiol., 137, 460–474.

10. Worden,A.Z., Lee,J.-H., Mock,T., Rouze,P., Simmons,M.P.,
Aerts,A.L., Allen,A.E., Cuvelier,M.L., Derelle,E., Everett,M.V.
et al. (2009) Green evolution and dynamic adaptations revealed by
genomes of the marine picoeukaryotes Micromonas. Science, 324,
268–272.

11. Palenik,B., Grimwood,J., Aerts,A., Rouze,P., Salamov,A.,
Putnam,N., Dupont,C., Jorgensen,R., Derelle,E., Rombauts,S.
et al. (2007) The tiny eukaryote Ostreococcus provides genomic
insights into the paradox of plankton speciation. Proc. Natl Acad.
Sci. USA, 104, 7705–7710.

12. Merchant,S.S., Prochnik,S.E., Vallon,O., Harris,E.H.,
Karpowicz,S.J., Witman,G.B., Terry,A., Salamov,A.,
Fritz-Laylin,L.K., Marechal-Drouard,L. et al. (2007) The
Chlamydomonas genome reveals the evolution of key animal and
plant functions. Science, 318, 245–250.

13. Rensing,S.A., Lang,D., Zimmer,A.D., Terry,A., Salamov,A.,
Shapiro,H., Nishiyama,T., Perroud,P.F., Lindquist,E.A.,
Kamisugi,Y. et al. (2008) The Physcomitrella genome reveals
evolutionary insights into the conquest of land by plants. Science,
319, 64–69.

14. Zhao,W., Wang,J., He,X., Huang,X., Jiao,Y., Dai,M., Wei,S.,
Fu,J., Chen,Y., Ren,X. et al. (2004) BGI-RIS: an integrated
information resource and comparative analysis workbench for rice
genomics. Nucleic Acids Res., 32, D377–D382.

15. Yuan,Q., Ouyang,S., Wang,A., Zhu,W., Maiti,R., Lin,H.,
Hamilton,J., Haas,B., Sultana,R., Cheung,F. et al. (2005) The
institute for genomic research Osa1 rice genome annotation
database. Plant Physiol., 138, 18–26.

16. Paterson,A.H., Bowers,J.E., Bruggmann,R., Dubchak,I.,
Grimwood,J., Gundlach,H., Haberer,G., Hellsten,U., Mitros,T.,
Poliakov,A. et al. (2009) The Sorghum bicolor genome and the
diversification of grasses. Nature, 457, 551–556.

17. Ming,R., Hou,S., Feng,Y., Yu,Q., Dionne-Laporte,A., Saw,J.H.,
Senin,P., Wang,W., Ly,B.V., Lewis,K.L. et al. (2008) The draft
genome of the transgenic tropical fruit tree papaya (Carica
papaya Linnaeus). Nature, 452, 991–996.

18. Swarbreck,D., Wilks,C., Lamesch,P., Berardini,T.Z.,
Garcia-Hernandez,M., Foerster,H., Li,D., Meyer,T., Muller,R.,
Ploetz,L. et al. (2008) The Arabidopsis Information Resource
(TAIR): gene structure and function annotation. Nucleic Acids Res.,
36, D1009–D1014.

19. Tuskan,G.A., Difazio,S., Jansson,S., Bohlmann,J., Grigoriev,I.,
Hellsten,U., Putnam,N., Ralph,S., Rombauts,S., Salamov,A. et al.
(2006) The genome of black cottonwood, Populus trichocarpa
(Torr& Gray). Science, 313, 1596–1604.

20. The French Italian Public Consortium for Grapevine Genome
Characterization. (2007) The grapevine genome sequence suggests
ancestral hexaploidization in major angiosperm phyla. Nature, 449,
463–467.

21. Finn,R.D., Tate,J., Mistry,J., Coggill,P.C., Sammut,S.J.,
Hotz,H.R., Ceric,G., Forslund,K., Eddy,S.R., Sonnhammer,E.L.
et al. (2008) The Pfam protein families database. Nucleic Acids Res.,
36, D281–D288.

22. Duncan,L., Nishii,I., Harryman,A., Buckley,S., Howard,A.,
Friedman,N.R. and Miller,S.M. (2007) The VARL gene family and
the evolutionary origins of the master cell-type regulatory gene,
regA, in Volvox carteri. J. Mol. Evol., 65, 1–11.

23. Dolinski,K. and Botstein,D. (2007) Orthology and functional
conservation in eukaryotes. Annu. Rev. Genet., 41, 465–507.

24. Remm,M., Storm,C.E. and Sonnhammer,E.L. (2001) Automatic
clustering of orthologs and in-paralogs from pairwise species
comparisons. J. Mol. Biol., 314, 1041–1052.

25. Feng,J.X., Liu,D., Pan,Y., Gong,W., Ma,L.G., Luo,J.C.,
Deng,X.W. and Zhu,Y.X. (2005) An annotation update via cDNA
sequence analysis and comprehensive profiling of developmental,
hormonal or environmental responsiveness of the Arabidopsis
AP2/EREBP transcription factor gene family. Plant Mol. Biol., 59,
853–868.

26. Remington,D.L., Vision,T.J., Guilfoyle,T.J. and Reed,J.W. (2004)
Contrasting modes of diversification in the Aux/IAA and ARF
gene families. Plant Physiol., 135, 1738–1752.

27. Bailey,P.C., Martin,C., Toledo-Ortiz,G., Quail,P.H., Huq,E.,
Heim,M.A., Jakoby,M., Werber,M. and Weisshaar,B. (2003)
Update on the basic helix-loop-helix transcription factor gene
family in Arabidopsis thaliana. Plant Cell, 15, 2497–2502.
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